TI-55 III Programs Part I: Digital Root, Complex Number Multiplication, Escape Velocity
This blog begins a three part series of programs with the TI-55 III. Let's show what this calculator can do.
For Part III: Area and Eccentricity of Ellipses, Determinant and Inverse of 2x2 Matrices, Speed of Sound/Principal Frequency
TI-55 III: Digital Root
Takes the digital root of an integer. To find the digital root:
1. Add up the number’s digits.
2. The sum is over 10, add the digits again.
3. Repeat step 2 until you get a single digit.
Or alternatively, use the formula dr(n) = 1 + ((n-1) mod 9) = n – 9 * integer((n-1)/9)
Program:
Partitions Allowed: 1-5, 1 register required
STEP | CODE | KEY | COMMENT |
00 | 61 | STO | Enter integer |
01 | 00 | 0 | |
02 | 75 | - | |
03 | 09 | 9 | |
04 | 65 | * | |
05 | 53 | ( | |
06 | 53 | ( | |
07 | 71 | RCL | |
08 | 00 | 0 | |
09 | 75 | - | |
10 | 01 | 1 | |
11 | 54 | ) | |
12 | 55 | ÷ | |
13 | 09 | 9 | |
14 | 54 | ) | |
15 | 88 | Intg | |
16 | 95 | = | |
17 | 12 | R/S | Display digital root |
Input: integer [RST] [R/S]
Result: digital root
Test 1: Input: 1555, Result: 7
Test 2: Input: 38267, Result: 8
TI-55 III: Complex Number Multiplication
(a + bi)*(c + di) = (r1*r2) * e^(i*(θ1 + θ2))
Where r1 ∠ θ1 is the polar form of a + bi and r2 ∠ θ2 is the polar form of c + di.
Program:
Partitions Allowed: 2-4, 2 memory registers are required
STEP | CODE | KEY | COMMENT |
00 | 52 | X<>Y | Start with a |
01 | 12 | R/S | Prompt for b |
02 | 41 | INV | |
03 | 57 | P-R | Convert to Polar |
04 | 61 | STO | |
05 | 01 | 1 | |
06 | 52 | X<>Y | |
07 | 61 | STO | |
08 | 00 | 0 | |
09 | 12 | R/S | Prompt for c |
10 | 52 | X<>Y | |
11 | 12 | R/S | Prompt for d |
12 | 41 | INV | |
13 | 57 | P-R | Convert to Polar |
14 | 61 | STO | |
15 | 85 | + | |
16 | 01 | 1 | STO+ 1 |
17 | 52 | X<>Y | |
18 | 61 | STO | |
19 | 65 | * | |
20 | 00 | 0 | STO* 0 |
21 | 71 | RCL | |
22 | 00 | 0 | |
23 | 52 | X<>Y | |
24 | 71 | RCL | |
25 | 01 | 1 | |
26 | 57 | P-R | Convert to Rectangular |
27 | 12 | R/S | Display imaginary part |
28 | 52 | X<>Y | |
29 | 12 | R/S | Display real part |
Input: a [RST] [R/S], b [R/S], c [R/S], d [R/S]
Result: imaginary part of the product [R/S], real part of the product
Test 1: (5 – 3i)*(4 + i)
Input: 5 [RST] [R/S], 3 [+/-] [R/S], 4 [R/S], 1 [R/S]
Result: -7 [R/S] 23 (23 – 7i)
Test 2: (-6 + 3i)*(2 + 2i)
Result: -18 – 6i
TI-55 III: Escape Velocity
v = √(2*G*m/r)
v = escape velocity (m/s)
G = University Gravitational Constant = 6.67384 * 10^-11 m^3/(kg*s^2)
m = mass of the planet (kg)
r = radius of the planet (m)
Note that 2*G = 1.334768 * 10^-10 m^3/(kg*s^2)
Program:
Allowed Partitions: 1-5
STEP | CODE | KEY | COMMENT |
00 | 47 | Eng | Set Engineering Mode |
01 | 65 | * | Start with mass |
02 | 01 | 1 | |
03 | 93 | . | Decimal Point |
04 | 03 | 3 | |
05 | 03 | 3 | |
06 | 04 | 4 | |
07 | 07 | 7 | |
08 | 06 | 6 | |
09 | 08 | 8 | |
10 | 42 | EE | |
11 | 01 | 1 | |
12 | 00 | 0 | |
13 | 94 | +/- | |
14 | 55 | ÷ | |
15 | 12 | R/S | Prompt for radius |
16 | 95 | = | |
17 | 13 | √ | |
18 | 12 | R/S | Display escape velocity |
Input: mass (in kg) [RST] [R/S] radius (in m) [R/S]
Result: escape velocity (m/s)
Test 1:
Earth: m = 5.97219 * 10^24 kg, r = 6.378 * 10^6 m
Input: 5.97219 [EE] 24 [RST] [R/S] 6.378 [EE] 6 [R/S]
Result: ≈ 11.179E3 (11,179 m/s)
Test 2:
Jupiter: m = 1.89796 * 10^27 kg, r = 71.492 * 10^6 m
Result: ≈ 59.528E3 (52,528 m/s)
Eddie
This blog is property of Edward Shore, 2016
TI-55 III Programs Part I: Digital Root, Complex Number Multiplication, Escape Velocity
Reviewed by Anonymous
on
19:40
Rating:
No comments: