Solar Scientific Calculators: Dealing with Integrals with Infinite Limits # New 2019

Hello everyone how are you today. I want to give a tutorial for you

Integrals with Infinite Limits

Today's post deals with integrals with infinite limits in the forms:

∫( f(x) dx, x = a to x = ∞)

∫( f(x) dx, x = -∞ to x = ∞)

∫( f(x) dx, x = -∞ to x = a)

One method to deal with these integrals, as suggested by W.A.C. Mier-Jedrzejowicz Ph. D. (see the source), is to use the substitution

x = tan θ

Then:

dx = dθ/cos^2 θ

and θ = atan x.

Also, as x approaches Ï€/2, tan x approaches +∞.

And, as x approaches -Ï€/2, tan x approaches -∞.

With the substations, let's test four integrals on four solar-powered scientific calculators:

1.  Casio fx-991EX Classwiz
2.  Sharp EL-W516T
3.  Texas Instruments TI-36X Pro
4.  Casio fx-115ES Plus

Set the calculator to radians mode. 




Example 1:  ∫(1/x^2 dx, x = 1 to x = ∞) = 1

∫(1/x^2 dx, x = 1 to x = ∞)

with the substitutions x = tan θ and dx = dθ/(cos^2 θ):

∫( 1/tan^2 θ * dθ/cos^2 θ, θ = atan 1 to θ = Ï€/2)

∫( 1/sin^2 θ * dθ, θ = atan 1 to θ = Ï€/2)

We can evaulate the integral straight away.  Here are the results:

1.  Casio fx-991EX Classwiz
Time: 1.37 seconds
Answer: 1

2.  Sharp EL-W516T
Time: 38 seconds
Answer: 1

3.  Texas Instruments TI-36X Pro
Time: 4.5 seconds
Answer: 1

4.  Casio fx-115ES Plus
Time: 4.2 seconds
Answer: 1

A promising start.

Example 2:  ∫(e^(-0.5*x^2), x = 0 to x = ∞) ≈ 1.25331413732

∫(e^(-0.5*x^2), x = 0 to x = ∞)

with the substituions, this becomes:

∫(e^(-0.5 * tan^2 θ)/cos^2 θ dθ, θ = atan 0 to θ = Ï€/2)

atan 0 = 0

But look at the denominator, we have cos^2 θ.  Since cos^2 Ï€/2 = 0, there will be a problem.  Let's use an approximation of Ï€/2 of 1.5708.

∫(e^(-0.5 * tan^2 θ)/cos^2 θ dθ, θ = 0 to θ = 1.5708)

Here are the results:

1.  Casio fx-991EX Classwiz
Time: 15.4 seconds
Answer: 1.253314137

2.  Sharp EL-W516T
Time: 1 minute, 8 seconds
Answer: errors out

3.  Texas Instruments TI-36X Pro
Time: 36 seconds
Answer: 1.253314138

4.  Casio fx-115ES Plus
Time: 1 minute, 6.8 seconds
Answer: 1.253314137

Example 3:  ∫(x^2*e^-x dx, x = 0 to x = ∞) = 2

∫(x^2*e^-x dx, x = 0 to x = ∞)

with the substitutions and simplification, we get:

∫( (sin^2 θ * e^(-tan θ))/cos^4 θ dθ, θ = 0 to θ = Ï€/2)

Like the last situation, there is a potential problem with the denominator.  Let's see if we can use an approximation of Ï€/2, this time using 1.57 in hopes to cut the calculation time down.

∫( (sin^2 θ * e^(-tan θ))/cos^4 θ dθ, θ = 0 to θ = 1.57)

Here are the results:

1.  Casio fx-991EX Classwiz
Time: 27 seconds
Answer: 2

2.  Sharp EL-W516T
Time: 1 minute, 34 seconds
Answer: 1.999999999

3.  Texas Instruments TI-36X Pro
Time: 1 minute, 9 seconds
Answer: 2

4.  Casio fx-115ES Plus
Time: 1 minute, 6.8 seconds
Answer: 1.253314137

Example 4:  ∫( e^-x/x^2 dx, x = 1 to x = ∞) ≈ 0.148495506776

∫( e^-x/x^2 dx, x = 1 to x = ∞)

with the substitutions and simplification, we get:

∫( e^(-tan θ)/sin^2 θ dθ, θ = 0 to θ = Ï€/2)

I'm going to use the 1.57 approximation again and set the integral as:

∫( e^(-tan θ)/sin^2 θ dθ, θ = 0 to θ = 1.57)

Here are the results:

1.  Casio fx-991EX Classwiz
Time: errors out immediately
Answer: N/A

2.  Sharp EL-W516T
Time: 1 minute, 6 seconds
Answer: error

3.  Texas Instruments TI-36X Pro
Time: 7 seconds
Answer: 0.148495519

4.  Casio fx-115ES Plus
Time: errors out after 1 second
Answer: N/A

Some Observations

1.  Not all calculations of improper integrals will be successful.

2.  Out of the four calculators tested, from the four calculations:  the Casio fx-991ES is the fastest, but I found the most successful with the Texas Instruments TI-36X Pro.

3.  Be ready to spend a little for calculations by using this method.

thanks you don't forget to comments and shared this article
Solar Scientific Calculators: Dealing with Integrals with Infinite Limits # New 2019 Solar Scientific Calculators: Dealing with Integrals with Infinite Limits # New 2019 Reviewed by dicky on 11:50 Rating: 5

No comments: