TI-65 Programs Part I: Digital Root, Complex Number Multiplication, Dew Point
Recently working with the HP-71B and Radio Shack EC-4004, I am feeling the 1980s vibes and staying in the decade for the 1987 classic calculator Texas Instruments TI-65.
Some background information of the TI-65 (provided by Datamath): http://www.datamath.org/Sci/Galaxy/TI-65.htm
Did you know the TI-65 has a timer? Click here to see a video demonstration!
This is the first part of programs for the TI-65 for this Fourth of July.
Click here for Part II: Reynold’s Number/Hydraulic Diameter, Escape Velocity, Speed of Sound/Resonant Frequencies in an Open Pipe
Click here for Part II: Reynold’s Number/Hydraulic Diameter, Escape Velocity, Speed of Sound/Resonant Frequencies in an Open Pipe
Click here for Part III: Impedance and Phase Angle of a Series RLC Circuit, 2 x 2 Linear System Solution, Prime Factorization
TI-65 Digital Root
Takes the digital root of an integer. To find the digital root:
1. Add up the number’s digits.
2. The sum is over 10, add the digits again.
3. Repeat step 2 until you get a single digit.
Or alternatively, use the formula dr(n) = 1 + ((n-1) mod 9) = n – 9 * intger((n-1)/9)
Program:
CODE | STEP | KEY |
12.0 | 00 | STO 0 |
49 | 01 | - |
9 | 02 | 9 |
38 | 03 | * |
16 | 04 | ( |
16 | 05 | ( |
13.0 | 06 | RCL 0 |
49 | 07 | - |
1 | 08 | 1 |
17 | 09 | ) |
28 | 10 | ÷ |
9 | 11 | 9 |
17 | 12 | ) |
2nd 27 | 13 | ITNG |
14 | 14 | = |
51 | 15 | R/S |
Input: Enter integer, press [RST] [R/S]
Test 1: dr(1555) = 7
Test 2: dr(38267) = 8
TI-65 Complex Multiplication
(a + bi)*(c + di) = (r1*r2) * e^(i*(θ1 + θ2))
Where r1 ∠ θ1 is the polar form of a + bi and r2 ∠ θ2 is the polar form of c + di.
Program:
CODE | STEP | KEY | COMMENT |
44 | 00 | X<>Y | Start with a |
51 | 01 | R/S | Prompt for b |
-2nd 22 | 02 | INV 2nd P-R | Convert to Polar |
12.1 | 03 | STO 1 | |
44 | 04 | X<>Y | |
12.0 | 05 | STO 0 | |
51 | 06 | R/S | Prompt for c |
44 | 07 | X<>Y | |
51 | 08 | R/S | Prompt for d |
-2nd 22 | 09 | INV 2nd P-R | Convert to Polar |
12.59 | 10 | STO+ | |
1 | 11 | 1 | STO+ 1 |
44 | 12 | X<>Y | |
12.38 | 13 | STO* | |
0 | 14 | 0 | STO* 0 |
13.0 | 15 | RCL 0 | |
44 | 16 | X<>Y | |
13.1 | 17 | RCL 1 | |
2nd 22 | 18 | 2nd P-R | Convert to Rectangular |
51 | 19 | R/S | Display imaginary part of product |
44 | 20 | X<>Y | |
51 | 21 | R/S | Display real part of product |
(a + bi)*(c + di) = x + yi
Input: a [RST] [R/S], b [R/S], c [R/S], d [R/S]
Output: y [R/S], x
Test 1: (5-3i)*(4+i):
5 [RST] [R/S]. -3 [R/S], 4 [R/S], 1 [R/S]
Result: -7 [R/S] 23, 23-7i
Test 2: (-6+3i)*(2 + 2i)
Result: -18 – 6i
TI-65 Dew Point Calculation
This program accepts input and displays dew point in degrees Fahrenheit (°F).
Source for formula: http://ag.arizona.edu/azmet/dewpoint.html
CODE | STEP | KEY | COMMENT |
3rd 28 | 00 | 3rd °F-°C | Convert to °C |
12.0 | 01 | STO 0 | |
38 | 02 | * | |
1 | 03 | 1 | |
7 | 04 | 7 | |
57 | 05 | . | Decimal Point |
2 | 06 | 2 | |
7 | 07 | 7 | |
12.1 | 08 | STO 1 | |
28 | 09 | ÷ | |
16 | 10 | ( | |
2 | 11 | 2 | |
3 | 12 | 3 | |
7 | 13 | 7 | |
57 | 14 | . | Decimal Point |
3 | 15 | 3 | |
12.2 | 16 | STO 2 | |
59 | 17 | + | |
13.0 | 18 | RCL 0 | |
17 | 19 | ) | |
59 | 20 | + | |
51 | 21 | R/S | Prompt for h |
32 | 22 | LN | |
39 | 23 | = | |
28 | 24 | ÷ | |
13.1 | 25 | RCL 1 | |
39 | 26 | = | |
12.1 | 27 | STO 1 | |
38 | 28 | * | |
13.2 | 29 | RCL 2 | |
28 | 30 | ÷ | |
16 | 31 | ( | |
1 | 32 | 1 | |
49 | 33 | - | |
13.1 | 34 | RCL 1 | |
17 | 35 | ) | |
39 | 36 | = | |
-3rd 28 | 37 | INV 3rd °F-°C | Convert to °F |
51 | 38 | R/S |
Input: Enter temperature in °F [RST] [R/S], enter humidity (as a decimal) [R/S]
Output: Dew Point in °F
Test 1: temperature = 68°F, humidity = 0.5 (50%)
68 [RST] [R/S], 0.5 [R/S]
Result: dew point ≈ 48.68533155°F
Temp 2: temperature = 93°F, humidity = 0.35
Result: dew point ≈ 61.29167421°F
Happy Birthday United States!
This blog is property of Edward Shore, 2016.
TI-65 Programs Part I: Digital Root, Complex Number Multiplication, Dew Point
Reviewed by Anonymous
on
15:40
Rating:
No comments: