Solving Absolute Value Equations

Solving Absolute Value Equations

Introduction

There are several ways to solve absolute value equations.  One way we can take advantage that |x|^2 = x^2, but only if we are dealing with real numbers.  To see why, please see the link below:


However, the surest way to solve equations involving absolute value equations.  Steps:

1.  Isolate the expression with absolute value one side of the equation. Hence to the equation to read something like this:  |f(x)| = g(x).
2.  Solve two equations:  f(x) = +g(x) and f(x) = -g(x).

Some examples of how the method works:


Example 1:

|x| + x = 5
|x| = 5 – x

The next step to solve two equations:  x = +(5 – x) and x = -(5 – x)

x = +(5 – x)
x = 5 – x
2x = 5
x = 5/2 

x = -(5 – x)
x= -5 + x
0 = -5, but 0 ≠ -5, so no solution in this case.

In our final analysis, x = 5/2

Example 2:

3*|x-2| = 6 + 4x
|x-2| = 2 + 4/3 * x

Now we need to solve both x – 2 = +(2 + 4/3*x) and x – 2 = -(2 + 4/3*x)

x – 2 = 2 + 4/3*x
-4 = 1/3 * x
-12 = x

x – 2 = -(2 + 4/3*x)
x – 2 = -2 – 4/3*x
0 = -7/3*x
0 = x

Both valid, so our solutions are x = -12 and x = 0.

Example 3:

|x^2 + 5*x + 6| = x

We know the drill, solve x^2 + 5*x + 6 = x and x^2 + 5*x + 6 = -x.

x^2 + 5*x + 6 = x
x^2 + 4*x + 6 = 0
x = (-4 ± √(16 – 24))/2
x = (-4 ± √(-8))/2
x = -2 ± i*√2

x^2 + 5*x + 6 = -x
x^2 + 6*x + 6 = 0
x = ( -6 ± √(36 – 24))/2
x = (-6 ± √12)/2
x = -3 ± √3

Hope you find this helpful, in the near future I want to tackle other common problems found in algebra. 

Eddie



This blog is property of Edward Shore, 2016.
Solving Absolute Value Equations Solving Absolute Value Equations Reviewed by Anonymous on 11:46 Rating: 5

No comments: